SMALL

선형대수학 9

Lecture18 Properties of Determinants

MIT Gilbert Strang교수님의 Linear Algebra 18강 Properties of Determinants 리뷰입니다. DeterminantsThe determinant is a number associated with any square matrix; det A or |A|determinant는 any square matrix와 연관되어 있는 숫자로써, det A 혹은 |A|로 표기한다.The matrix is invertible exactly when the determinant is non-zero.행렬은 행렬식이 0이 아닐 때 invertible하다.  Properties모든 크기의 정방행렬의 행렬식에 대한 공식을 줄 것이다.특징으로는 아래와 같다. 1. det I = 1 2. 행..

Lecture17 Orthogonal Matrices and Gram-Schmidt

MIT Gilbertsrang 교수님의 Linear algebra 17강 Orthogonal Matrices and Gram-Schmidt 배우겠습니다. Orthonormal Vectors (직교벡터) : 길이가 1인 모든 열벡터가 서로 직교하는 것All have (normal) length 1 and are perpendicular (ortho) to each other. Orthonormal vectors are always independent. 모두 (정규) 길이가 1이고 서로 수직이다. 직교 벡터는 항상 독립적이다. 나아가, Orthonormal vector = orthogonal and unit vector 이다. 즉 every q is orthogonal to every other q.이다...

Lecture16 Projection Matrices and Least Squares

오늘은 MIT Gilbertstrang 교수님의 Linearalgebra 16강 Projection matrices and least squares를 배우겠습니다.Projections(사영)If b is perpendicular to the column space, then it’s in the left nullspace N(AT) of A and Pb = 0. If b is in the column space then b = Ax for some x, and Pb = b. 1. perpendicular한 경우 : b가 column space에 수직이라면 Pb = 0이다. (vectors in the left nullspace of AT)2) column space 안에 있는 경우 : b가 column ..

Lecture15 Projections onto Subspaces

MIT Gilberstrang 교수님의 Linear Algebra 15강 Projections onto Subspaces 강의 Projections (투영) : 하나의 vector를 다른 vector로 옮겨 표현하는 것We can see from Figure 1 that this closest point p is at the intersection formed by a line through b that is orthogonal to a. If we think of p as an approximation of b, then the length of e = b − p is the error in that approxi­mation. We could try to find p using trigonometry..

Lecture14 Orthogonal Vectors and Subspaces

MIT GilbertStrang 교수님의 Linearalgebra 14강 Orthogonal Vectors and subspacesThe “big picture” of this course is that the row space of a matrix’ is orthog­onal to its nullspace, and its column space is orthogonal to its left nullspace.Row space & nullspace는 orthogonal(직교)한다. Column space & left nullspace도 orthogonal(직교)한다.Orthogonal vectors (직교 벡터)Orthogonal is just another word for perpendicular. T..

Lecture11 Matrix Spaces; Rank 1; Small World Graphs

안녕하세요오늘은Lecture11 Matrix Spaces; Rank 1; Small World Graphs 에 대해 학습하겠습니다.  Matrix spaces (New vector spaces)New vector spaces = Matrix spaces, M = all 3 by 3 matrices새로운 벡터공간은 행렬 공간이며, M은 모든 3 * 3 행렬이다.또한, 행렬 M은 3가지 부분 공간인 Symmetric Matrix, Upper triangular Matrix, Diagonal Matrix를 가지고 있다.Dimension & BasisThe dimension of M is 9; we must choose 9 numbers to specify an element of M. The space M i..

Lecture6 Column Space and Nullspace

안녕하세요,오늘은 MIT Gilbert Strang교수님의 Linear algebra 6강 Column Space and Nullspace에 대해 리뷰해보도록 하겠습니다.   Vector SpaceA vector space is a collection of vectors which is closed under linear combinations. In other words, for any two vectors v and w in the space and any two real numbers c and d, the vector cv + dw is also in the vector space. A subspace is a vector space contained inside a vector space. Ve..

Lecture#3 Multiplication and Inverse Matrices

안녕하세요 오늘은 MIT Gilbert Strang교수님의 Linear algebra 3강 Multiplication and Inverse Matrices를 공부하도록 하겠습니다. Matrix A multiplying 1. Column Combination행*열의 곱을 원소별 계산으로 정리할 수 있다. (대부분은 벡터로 표현)If they are square, they have got to be the same.If they are rectangular, they are not the same size.here goes A, again, times B producing C.A times a vector is a combination of the columns of A.because the columns ..

An Overview of Linear Algebra

안녕하세요, 인공지능 전공자라면 정말 중요하지만 어렵게 느끼는 선형대수학 입니다. 오늘은 MIT GilbertStrang 교수님의 2강인 An Overview of Linear Algebra 에 대해 리뷰해보겠습니다.   This is an overview of linear algebra given at the start of a course on the math­ ematics of engineering.  VectorsWhat do we do with vectors? Take combinationsWe can multiply vectors by scalars(such as under x1,x2,x3), add, and subtract. Given vectors u, vand w we can form ..

728x90
LIST